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Foreword by Gareth James

T he field of statistics has existed in one form or another for 200 years, and by
the second half of the 20th century had evolved into a well-respected and

essential academic discipline. However, its prominence expanded rapidly in the
1990s with the explosion of new, and enormous, data sources. For the first part
of this century, much of this attention was focused on biological applications,
in particular, genetics data generated as a result of the sequencing of the human
genome. However, the last decade has seen a dramatic increase in the availability
of data in the business disciplines, and a corresponding interest in business-related
statistical applications.

The impact has been profound. Ten years ago, when I was able to attract a
full class of MBA students to my new statistical learning elective, my colleagues
were astonished because our department struggled to fill most electives. Today,
we offer a Masters in Business Analytics, which is the largest specialized masters
program in the school and has application volume rivaling those of our MBA
programs. Our department’s faculty size and course offerings have increased
dramatically, yet the MBA students are still complaining that the classes are all
full. Google’s chief economist, Hal Varian, was indeed correct in 2009 when he
stated that “the sexy job in the next 10 years will be statisticians.”

This demand is driven by a simple, but undeniable, fact. Business analyt-
ics solutions have produced significant and measurable improvements in business
performance, on multiple dimensions and in numerous settings, and as a result,
there is a tremendous demand for individuals with the requisite skill set. How-
ever, training students in these skills is challenging given that, in addition to
the obvious required knowledge of statistical methods, they need to understand
business-related issues, possess strong communication skills, and be comfortable
dealing with multiple computational packages. Most statistics texts concentrate
on abstract training in classical methods, without much emphasis on practical,
let alone business, applications.

This book has by far the most comprehensive review of business analytics
methods that I have ever seen, covering everything from classical approaches
such as linear and logistic regression, through to modern methods like neural



networks, bagging and boosting, and even much more business specific proce-
dures such as social network analysis and text mining. If not the bible, it is at
the least a definitive manual on the subject. However, just as important as the
list of topics, is the way that they are all presented in an applied fashion using
business applications. Indeed the last chapter is entirely dedicated to 10 separate
cases where business analytics approaches can be applied.

In this latest edition, the authors have added an important new dimension
in the form of the R software package. Easily the most widely used and influ-
ential open source statistical software, R has become the go-to tool for such
purposes. With literally hundreds of freely available add-on packages, R can
be used for almost any business analytics related problem. The book provides
detailed descriptions and code involving applications of R in numerous business
settings, ensuring that the reader will actually be able to apply their knowledge
to real-life problems.

We recently introduced a business analytics course into our required MBA
core curriculum and I intend to make heavy use of this book in developing the
syllabus. I’m confident that it will be an indispensable tool for any such course.

GARETH JAMES

Marshall School of Business, University of Southern California, 2017



Foreword by Ravi Bapna

D ata is the new gold—and mining this gold to create business value in today’s
context of a highly networked and digital society requires a skillset that we

haven’t traditionally delivered in business or statistics or engineering programs
on their own. For those businesses and organizations that feel overwhelmed by
today’s Big Data, the phrase you ain’t seen nothing yet comes to mind. Yester-
day’s three major sources of Big Data—the 20+ years of investment in enterprise
systems (ERP, CRM, SCM, …), the 3 billion plus people on the online social
grid, and the close to 5 billion people carrying increasingly sophisticated mobile
devices—are going to be dwarfed by tomorrow’s smarter physical ecosystems
fueled by the Internet of Things (IoT) movement.

The idea that we can use sensors to connect physical objects such as homes,
automobiles, roads, even garbage bins and streetlights, to digitally optimized
systems of governance goes hand in glove with bigger data and the need for
deeper analytical capabilities. We are not far away from a smart refrigerator
sensing that you are short on, say, eggs, populating your grocery store’s mobile
app’s shopping list, and arranging a Task Rabbit to do a grocery run for you.
Or the refrigerator negotiating a deal with an Uber driver to deliver an evening
meal to you. Nor are we far away from sensors embedded in roads and vehicles
that can compute traffic congestion, track roadway wear and tear, record vehicle
use and factor these into dynamic usage-based pricing, insurance rates, and even
taxation. This brave new world is going to be fueled by analytics and the ability
to harness data for competitive advantage.

Business Analytics is an emerging discipline that is going to help us ride this
new wave. This new Business Analytics discipline requires individuals who are
grounded in the fundamentals of business such that they know the right questions
to ask, who have the ability to harness, store, and optimally process vast datasets
from a variety of structured and unstructured sources, and who can then use an
array of techniques from machine learning and statistics to uncover new insights
for decision-making. Such individuals are a rare commodity today, but their
creation has been the focus of this book for a decade now. This book’s forte is
that it relies on explaining the core set of concepts required for today’s business
analytics professionals using real-world data-rich cases in a hands-on manner,



without sacrificing academic rigor. It provides a modern day foundation for
Business Analytics, the notion of linking the x’s to the y’s of interest in a predictive
sense. I say this with the confidence of someone who was probably the first
adopter of the zeroth edition of this book (Spring 2006 at the Indian School of
Business).

I can’t say enough about the long-awaited R edition. R is my go-to platform
for analytics these days. It’s also used by a wide variety of instructors in our MS-
Business Analytics program. The open-innovation paradigm used by R is one
key part of the analytics perfect storm, the other components being the advances
in computing and the business appetite for data-driven decision-making.

I look forward to using the book in multiple fora, in executive education,
in MBA classrooms, in MS-Business Analytics programs, and in Data Science
bootcamps. I trust you will too!

RAVI BAPNA

Carlson School of Management, University of Minnesota, 2017



Preface to the R Edition

T his textbook first appeared in early 2007 and has been used by numerous
students and practitioners and in many courses, ranging from dedicated

data mining classes to more general business analytics courses (including our
own experience teaching this material both online and in person for more than
10 years). The first edition, based on the Excel add-in XLMiner, was followed
by two more XLMiner editions, a JMP edition, and now this R edition, with
its companion website, www.dataminingbook.com.

This new R edition, which relies on the free and open-source R soft-
ware, presents output from R, as well as the code used to produce that output,
including specification of a variety of packages and functions. Unlike computer-
science or statistics-oriented textbooks, the focus in this book is on data mining
concepts, and how to implement the associated algorithms in R. We assume a
basic facility with R.

For this R edition, two new co-authors stepped on board—Inbal Yahav and
Casey Lichtendahl—bringing both expertise teaching business analytics courses
using R and data mining consulting experience in business and government.
Such practical experience is important, since the open-source nature of R soft-
ware makes available a plethora of approaches, packages, and functions available
for data mining. Given the main goal of this book—to introduce data min-
ing concepts using R software for illustration—our challenge was to choose an
R code cocktail that supports highlighting the important concepts. In addi-
tion to providing R code and output, this edition also incorporates updates and
new material based on feedback from instructors teaching MBA, undergraduate,
diploma, and executive courses, and from their students as well.

One update, compared to the first two editions of the book, is the title:
we now use Business Analytics in place of Business Intelligence. This reflects the
change in terminology since the second edition: Business Intelligence today
refers mainly to reporting and data visualization (“what is happening now”),
while Business Analytics has taken over the “advanced analytics,” which include
predictive analytics and data mining. In this new edition, we therefore use the
updated terms.

http://www.dataminingbook.com


This R edition includes the material that was recently added in the third
edition of the original (XLMiner-based) book:

• Social network analysis

• Text mining

• Ensembles

• Uplift modeling

• Collaborative filtering

Since the appearance of the (XLMiner-based) second edition, the landscape
of the courses using the textbook has greatly expanded: whereas initially, the
book was used mainly in semester-long elective MBA-level courses, it is now
used in a variety of courses in Business Analytics degrees and certificate programs,
ranging from undergraduate programs, to post-graduate and executive education
programs. Courses in such programs also vary in their duration and coverage. In
many cases, this textbook is used across multiple courses. The book is designed to
continue supporting the general “Predictive Analytics” or “Data Mining” course
as well as supporting a set of courses in dedicated business analytics programs.

A general “Business Analytics,” “Predictive Analytics,” or “Data Mining”
course, common in MBA and undergraduate programs as a one-semester elec-
tive, would cover Parts I–III, and choose a subset of methods from Parts IV
and V. Instructors can choose to use cases as team assignments, class discussions,
or projects. For a two-semester course, Part VI might be considered, and we
recommend introducing the new Part VII (Data Analytics).

For a set of courses in a dedicated business analytics program, here are a few
courses that have been using our book:

Predictive Analytics: Supervised Learning In a dedicated Business
Analytics program, the topic of Predictive Analytics is typically instructed
across a set of courses. The first course would cover Parts I–IV and instruc-
tors typically choose a subset of methods from Part IV according to the
course length. We recommend including the new Chapter 13 in such a
course, as well as the new “Part VII: Data Analytics.”

Predictive Analytics: Unsupervised Learning This course introduces
data exploration and visualization, dimension reduction, mining relation-
ships, and clustering (Parts III and V). If this course follows the Predictive
Analytics: Supervised Learning course, then it is useful to examine examples
and approaches that integrate unsupervised and supervised learning, such as
the new part on “Data Analytics.”

Forecasting Analytics A dedicated course on time series forecasting
would rely on Part VI.



Advanced Analytics A course that integrates the learnings from Predictive
Analytics (supervised and unsupervised learning). Such a course can focus
on Part VII: Data Analytics, where social network analytics and text mining
are introduced. Some instructors choose to use the Cases (Chapter 21) in
such a course.

In all courses, we strongly recommend including a project component,
where data are either collected by students according to their interest or pro-
vided by the instructor (e.g., from the many data mining competition datasets
available). From our experience and other instructors’ experience, such projects
enhance the learning and provide students with an excellent opportunity to
understand the strengths of data mining and the challenges that arise in the
process.
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Introduction

1.1 What Is Business Analytics?

Business Analytics (BA) is the practice and art of bringing quantitative data to bear
on decision-making. The term means different things to different organizations.

Consider the role of analytics in helping newspapers survive the transition
to a digital world. One tabloid newspaper with a working-class readership in
Britain had launched a web version of the paper, and did tests on its home
page to determine which images produced more hits: cats, dogs, or monkeys.
This simple application, for this company, was considered analytics. By contrast,
the Washington Post has a highly influential audience that is of interest to big
defense contractors: it is perhaps the only newspaper where you routinely see
advertisements for aircraft carriers. In the digital environment, the Post can
track readers by time of day, location, and user subscription information. In this
fashion, the display of the aircraft carrier advertisement in the online paper may
be focused on a very small group of individuals—say, the members of the House
and Senate Armed Services Committees who will be voting on the Pentagon’s
budget.

Business Analytics, or more generically, analytics, include a range of data
analysis methods. Many powerful applications involve little more than count-
ing, rule-checking, and basic arithmetic. For some organizations, this is what is
meant by analytics.

The next level of business analytics, now termed Business Intelligence (BI),
refers to data visualization and reporting for understanding “what happened and
what is happening.” This is done by use of charts, tables, and dashboards to
display, examine, and explore data. BI, which earlier consisted mainly of gener-
ating static reports, has evolved into more user-friendly and effective tools and
practices, such as creating interactive dashboards that allow the user not only to
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access real-time data, but also to directly interact with it. Effective dashboards
are those that tie directly into company data, and give managers a tool to quickly
see what might not readily be apparent in a large complex database. One such
tool for industrial operations managers displays customer orders in a single two-
dimensional display, using color and bubble size as added variables, showing
customer name, type of product, size of order, and length of time to produce.

Business Analytics now typically includes BI as well as sophisticated data
analysis methods, such as statistical models and data mining algorithms used for
exploring data, quantifying and explaining relationships between measurements,
and predicting new records. Methods like regression models are used to describe
and quantify “on average” relationships (e.g., between advertising and sales),
to predict new records (e.g., whether a new patient will react positively to a
medication), and to forecast future values (e.g., next week’s web traffic).

Readers familiar with earlier editions of this book may have noticed that the
book title has changed from Data Mining for Business Intelligence to Data Mining
for Business Analytics in this edition. The change reflects the more recent term
BA, which overtook the earlier term BI to denote advanced analytics. Today,
BI is used to refer to data visualization and reporting.

W H O U S E S P R E D I C T I V E A N A L Y T I C S ?

The widespread adoption of predictive analytics, coupled with the accelerating avail-
ability of data, has increased organizations’ capabilities throughout the economy.
A few examples:
Credit scoring: One long-established use of predictive modeling techniques for
business prediction is credit scoring. A credit score is not some arbitrary judgment
of credit-worthiness; it is based mainly on a predictive model that uses prior data
to predict repayment behavior.
Future purchases: A more recent (and controversial) example is Target’s use of
predictive modeling to classify sales prospects as “pregnant” or “not-pregnant.”
Those classified as pregnant could then be sent sales promotions at an early stage
of pregnancy, giving Target a head start on a significant purchase stream.
Tax evasion: The US Internal Revenue Service found it was 25 times more likely to
find tax evasion when enforcement activity was based on predictive models, allowing
agents to focus on the most-likely tax cheats (Siegel, 2013).

The Business Analytics toolkit also includes statistical experiments, the most
common of which is known to marketers as A-B testing. These are often used
for pricing decisions:

• Orbitz, the travel site, found that it could price hotel options higher for
Mac users than Windows users.

• Staples online store found it could charge more for staplers if a customer
lived far from a Staples store.
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Beware the organizational setting where analytics is a solution in search of
a problem: A manager, knowing that business analytics and data mining are hot
areas, decides that her organization must deploy them too, to capture that hidden
value that must be lurking somewhere. Successful use of analytics and data
mining requires both an understanding of the business context where value is to
be captured, and an understanding of exactly what the data mining methods do.

1.2 What Is Data Mining?

In this book, data mining refers to business analytics methods that go beyond
counts, descriptive techniques, reporting, and methods based on business rules.
While we do introduce data visualization, which is commonly the first step into
more advanced analytics, the book focuses mostly on the more advanced data
analytics tools. Specifically, it includes statistical and machine-learning meth-
ods that inform decision-making, often in an automated fashion. Prediction is
typically an important component, often at the individual level. Rather than
“what is the relationship between advertising and sales,” we might be interested
in “what specific advertisement, or recommended product, should be shown to
a given online shopper at this moment?” Or we might be interested in clustering
customers into different “personas” that receive different marketing treatment,
then assigning each new prospect to one of these personas.

The era of Big Data has accelerated the use of data mining. Data mining
methods, with their power and automaticity, have the ability to cope with huge
amounts of data and extract value.

1.3 Data Mining and Related Terms

The field of analytics is growing rapidly, both in terms of the breadth of appli-
cations, and in terms of the number of organizations using advanced analytics.
As a result, there is considerable overlap and inconsistency of definitions.

The term data mining itself means different things to different people. To the
general public, it may have a general, somewhat hazy and pejorative meaning
of digging through vast stores of (often personal) data in search of something
interesting. One major consulting firm has a “data mining department,” but its
responsibilities are in the area of studying and graphing past data in search of
general trends. And, to confuse matters, their more advanced predictive models
are the responsibility of an “advanced analytics department.” Other terms that
organizations use are predictive analytics, predictive modeling, and machine learning.

Data mining stands at the confluence of the fields of statistics and machine
learning (also known as artificial intelligence). A variety of techniques for explor-
ing data and building models have been around for a long time in the world of
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statistics: linear regression, logistic regression, discriminant analysis, and princi-
pal components analysis, for example. But the core tenets of classical statistics—
computing is difficult and data are scarce—do not apply in data mining applica-
tions where both data and computing power are plentiful.

This gives rise to Daryl Pregibon’s description of data mining as “statistics
at scale and speed” (Pregibon, 1999). Another major difference between the
fields of statistics and machine learning is the focus in statistics on inference from
a sample to the population regarding an “average effect”—for example, “a $1
price increase will reduce average demand by 2 boxes.” In contrast, the focus in
machine learning is on predicting individual records—“the predicted demand
for person i given a $1 price increase is 1 box, while for person j it is 3 boxes.”
The emphasis that classical statistics places on inference (determining whether a
pattern or interesting result might have happened by chance in our sample) is
absent from data mining.

In comparison to statistics, data mining deals with large datasets in an open-
ended fashion, making it impossible to put the strict limits around the question
being addressed that inference would require. As a result, the general approach
to data mining is vulnerable to the danger of overfitting, where a model is fit
so closely to the available sample of data that it describes not merely structural
characteristics of the data, but random peculiarities as well. In engineering terms,
the model is fitting the noise, not just the signal.

In this book, we use the term machine learning to refer to algorithms that
learn directly from data, especially local patterns, often in layered or iterative
fashion. In contrast, we use statistical models to refer to methods that apply global
structure to the data. A simple example is a linear regression model (statistical) vs.
a k-nearest-neighbors algorithm (machine learning). A given record would be
treated by linear regression in accord with an overall linear equation that applies
to all the records. In k-nearest neighbors, that record would be classified in
accord with the values of a small number of nearby records.

Lastly, many practitioners, particularly those from the IT and computer sci-
ence communities, use the term machine learning to refer to all the methods dis-
cussed in this book.

1.4 Big Data

Data mining and Big Data go hand in hand. Big Data is a relative term—data
today are big by reference to the past, and to the methods and devices available
to deal with them. The challenge Big Data presents is often characterized by the
four V’s—volume, velocity, variety, and veracity. Volume refers to the amount of
data. Velocity refers to the flow rate—the speed at which it is being generated and
changed. Variety refers to the different types of data being generated (currency,
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dates, numbers, text, etc.). Veracity refers to the fact that data is being generated
by organic distributed processes (e.g., millions of people signing up for services
or free downloads) and not subject to the controls or quality checks that apply
to data collected for a study.

Most large organizations face both the challenge and the opportunity of Big
Data because most routine data processes now generate data that can be stored
and, possibly, analyzed. The scale can be visualized by comparing the data in a
traditional statistical analysis (say, 15 variables and 5000 records) to the Walmart
database. If you consider the traditional statistical study to be the size of a period
at the end of a sentence, then the Walmart database is the size of a football field.
And that probably does not include other data associated with Walmart—social
media data, for example, which comes in the form of unstructured text.

If the analytical challenge is substantial, so can be the reward:

• OKCupid, the online dating site, uses statistical models with their data
to predict what forms of message content are most likely to produce a
response.

• Telenor, a Norwegian mobile phone service company, was able to reduce
subscriber turnover 37% by using models to predict which customers were
most likely to leave, and then lavishing attention on them.

• Allstate, the insurance company, tripled the accuracy of predicting injury
liability in auto claims by incorporating more information about vehicle
type.

The above examples are from Eric Siegel’s book Predictive Analytics (2013, Wiley).
Some extremely valuable tasks were not even feasible before the era of Big

Data. Consider web searches, the technology on which Google was built. In
early days, a search for “Ricky Ricardo Little Red Riding Hood” would have
yielded various links to the I Love LucyTV show, other links to Ricardo’s career as
a band leader, and links to the children’s story of Little Red Riding Hood. Only
once the Google database had accumulated sufficient data (including records of
what users clicked on) would the search yield, in the top position, links to the
specific I Love Lucy episode in which Ricky enacts, in a comic mixture of Spanish
and English, Little Red Riding Hood for his infant son.

1.5 Data Science

The ubiquity, size, value, and importance of Big Data has given rise to a new
profession: the data scientist. Data science is a mix of skills in the areas of statistics,
machine learning, math, programming, business, and IT. The term itself is thus
broader than the other concepts we discussed above, and it is a rare individual
who combines deep skills in all the constituent areas. In their book Analyzing
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the Analyzers (Harris et al., 2013), the authors describe the skill sets of most data
scientists as resembling a ‘T’—deep in one area (the vertical bar of the T), and
shallower in other areas (the top of the T).

At a large data science conference session (Strata+Hadoop World, Octo-
ber 2014), most attendees felt that programming was an essential skill, though
there was a sizable minority who felt otherwise. And, although Big Data is the
motivating power behind the growth of data science, most data scientists do not
actually spend most of their time working with terabyte-size or larger data.

Data of the terabyte or larger size would be involved at the deployment stage
of a model. There are manifold challenges at that stage, most of them IT and
programming issues related to data-handling and tying together different compo-
nents of a system. Much work must precede that phase. It is that earlier piloting
and prototyping phase on which this book focuses—developing the statistical and
machine learning models that will eventually be plugged into a deployed system.
What methods do you use with what sorts of data and problems? How do the
methods work? What are their requirements, their strengths, their weaknesses?
How do you assess their performance?

1.6 Why Are There So Many Different
Methods?

As can be seen in this book or any other resource on data mining, there are
many different methods for prediction and classification. You might ask yourself
why they coexist, and whether some are better than others. The answer is that
each method has advantages and disadvantages. The usefulness of a method
can depend on factors such as the size of the dataset, the types of patterns that
exist in the data, whether the data meet some underlying assumptions of the
method, how noisy the data are, and the particular goal of the analysis. A small
illustration is shown in Figure 1.1, where the goal is to find a combination of
household income level and household lot size that separates buyers (solid circles) from

FIGURE 1.1 TWO METHODS FOR SEPARATING OWNERS FROM NONOWNERS
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nonbuyers (hollow circles) of riding mowers. The first method (left panel) looks
only for horizontal and vertical lines to separate buyers from nonbuyers, whereas
the second method (right panel) looks for a single diagonal line.

Different methods can lead to different results, and their performance can
vary. It is therefore customary in data mining to apply several different methods
and select the one that appears most useful for the goal at hand.

1.7 Terminology and Notation

Because of the hybrid parentry of data mining, its practitioners often use multiple
terms to refer to the same thing. For example, in the machine learning (artificial
intelligence) field, the variable being predicted is the output variable or target
variable. To a statistician, it is the dependent variable or the response. Here is a
summary of terms used:

Algorithm A specific procedure used to implement a particular data mining
technique: classification tree, discriminant analysis, and the like.

Attribute see Predictor.

Case see Observation.

Confidence A performance measure in association rules of the type “IF A and
B are purchased, THEN C is also purchased.” Confidence is the conditional
probability that C will be purchased IF A and B are purchased.

Confidence also has a broader meaning in statistics (confidence interval), concern-
ing the degree of error in an estimate that results from selecting one sample
as opposed to another.

Dependent Variable see Response.

Estimation see Prediction.

Feature see Predictor.

Holdout Data (or holdout set) A sample of data not used in fitting a model,
but instead used to assess the performance of that model. This book uses the
terms validation set and test set instead of holdout set.

Input Variable see Predictor.

Model An algorithm as applied to a dataset, complete with its settings (many of
the algorithms have parameters that the user can adjust).

Observation The unit of analysis on which the measurements are taken (a cus-
tomer, a transaction, etc.), also called instance, sample, example, case, record,
pattern, or row. In spreadsheets, each row typically represents a record; each
column, a variable. Note that the use of the term “sample” here is dif-
ferent from its usual meaning in statistics, where it refers to a collection of
observations.
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Outcome Variable see Response.

Output Variable see Response.

P (A | B) The conditional probability of event A occurring given that event
B has occurred, read as “the probability that A will occur given that B has
occurred.”

Prediction The prediction of the numerical value of a continuous output vari-
able; also called estimation.

Predictor A variable, usually denoted by X , used as an input into a predic-
tive model, also called a feature, input variable, independent variable, or from a
database perspective, a field.

Profile A set of measurements on an observation (e.g., the height, weight, and
age of a person).

Record see Observation.

Response A variable, usually denoted by Y , which is the variable being pre-
dicted in supervised learning, also called dependent variable, output variable,
target variable, or outcome variable.

Sample In the statistical community, “sample” means a collection of observa-
tions. In the machine learning community, “sample” means a single obser-
vation.

Score A predicted value or class. Scoring new data means using a model devel-
oped with training data to predict output values in new data.

Success Class The class of interest in a binary outcome (e.g., purchasers in the
outcome purchase/no purchase).

Supervised Learning The process of providing an algorithm (logistic regres-
sion, regression tree, etc.) with records in which an output variable of inter-
est is known and the algorithm “learns” how to predict this value with new
records where the output is unknown.

Target see Response.

Test Data (or test set) The portion of the data used only at the end of the
model building and selection process to assess how well the final model might
perform on new data.

Training Data (or training set) The portion of the data used to fit a model.

Unsupervised Learning An analysis in which one attempts to learn patterns
in the data other than predicting an output value of interest.

Validation Data (or validation set) The portion of the data used to assess
how well the model fits, to adjust models, and to select the best model from
among those that have been tried.

Variable Any measurement on the records, including both the input (X) vari-
ables and the output (Y ) variable.
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1.8 Road Maps to This Book

The book covers many of the widely used predictive and classification methods
as well as other data mining tools. Figure 1.2 outlines data mining from a process
perspective and where the topics in this book fit in. Chapter numbers are indi-
cated beside the topic. Table 1.1 provides a different perspective: it organizes
data mining procedures according to the type and structure of the data.

Order of Topics

The book is divided into five parts: Part I (Chapters 1–2) gives a general
overview of data mining and its components. Part II (Chapters 3–4) focuses
on the early stages of data exploration and dimension reduction.

Part III (Chapter 5) discusses performance evaluation. Although it contains
only one chapter, we discuss a variety of topics, from predictive performance
metrics to misclassification costs. The principles covered in this part are crucial
for the proper evaluation and comparison of supervised learning methods.

Part IV includes eight chapters (Chapters 6–13), covering a variety of popular
supervised learning methods (for classification and/or prediction). Within this
part, the topics are generally organized according to the level of sophistication
of the algorithms, their popularity, and ease of understanding. The final chapter
introduces ensembles and combinations of methods.

FIGURE 1.2 DATA MINING FROM A PROCESS PERSPECTIVE. NUMBERS IN PARENTHESES
INDICATE CHAPTER NUMBERS




